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* |Introduction to generative models
e Variational autoencoder
e Supervised (conditional) variational autoencoder

e Semi-supervised variational autoencoder



Introduction to generative models



Probabilistic models
Setup

* In ML, we assume datapoints x and labels y are generated from an underlying
true probabilistic model

e goal is to build probabilistic model that is close to the true model

» Joint distribution p(x,y) = p(x)p(y | x)



Discriminative vs generative models

* [wo types of probabilistic models

» Discriminative models model p(y | x) directly, ignore p(x)

* |logistic regression, SVMs, kNN, random forests, some neural nets

» Generative models model p(x) ( p(x, y) for supervised learning )

* Naive Bayes, Hidden Markov Models, Variational Autoencoders



Taxonomy of Generative Models Direct

GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Chain
.. . GSN
Fully Visible Belief Nets \

- NADE _ ’/ _
- MADE Variational Markov Chain
- PixelRNN/CNN

. Variational Autoencoder Boltzmann Machine
Change of variables models

(nonlinear ICA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 19 May 18, 2017



Variational Autoencoder (VAE)



Variational Autoencoder (VAE)
Setup

o Unsupervised latent variable model - hidden variable z, datapoint x

p2) p(x|z)

O

 Example: x is an image of a face, z represents facial features

» Choose p(z) to be any simple distribution e.g. 4 (0, I)
» Model p(x|z) using neural network with parameters 6 -> p,(x | z)

» Posterior p(z|x) could also be of interest



Variational Autoencoder (VAE)
What is the problem?

. p(x) = [pg(x | 2)p(2)dz  -> intractable

Po(x | 2)p(2)

. Turns out posterior is also intractable: p(z|x) = o
p(x

» We can’t even compute p(x)

 How can we train a model?

« How can we compute p(z|x) ?



Variational Autoencoder (VAE)

Solution

» Kill two birds with one stone - train model and get approximation to p(z | x)

e Can use Markov Chain Monte Carlo (MCMC) or Variational Inference (VI)



Variational Autoencoder (VAE)
MCMC or VI?

« MCMC estimates gradient of p(x) via samples from p(z | x)

e expensive, unfeasible for large datasets

» VI assumes functional form for p(z | x) -> g(z | x)
* Approximate but efficient, scales well to large datasets

 VAEs use VI (hence the name ‘variational’)



Variational Autoencoder (VAE)

Using VI to solve our problem

» Parameterise ¢(z | x) using a neural network with parameters ¢ -> ¢,(z | x)

« VAE with encoder q¢(z | x), decoder Pox | 2)

» Still need a way to train the model - derivation follows



Variational Autoencoder (VAE)

Deriving the training objective

Marginalisation p(x) — Jp(x | Z)p(Z)dZ
= Jp(x | 2) P) q(z|x)dz
q(z] x)
- | p(z)
Definition of expectation — _ZNQ(Z|X) (p(x ‘ Z) q(z ‘ x) )

p(z)
log p(x) = log [_ZNQ(Z|X) (p(x 12) q(z|x) )]



Variational Autoencoder (VAE)

Deriving the training objective

Jensen’s inequality

Definition

Form usually used in VAEs

lng(x) — lOg [_zqu(zlx) (p (x | Z)

log p(x) >

log p(x) >
ELBO =

ELBO =

p(2) )]
q(z | x)

—z~q(z|x) lOg [p(-x | Z)

—z~q(z|x) lOg p(x ‘ Z)

Reconstruction term

= ozl 108 P(x | 2) + log p(z) — log g(z | x)

p(2) ]
q(z | x)

= oty [log (x| 2) + log p(z) — log g(z | x)

— Dg; (6](2 | x) | \P(Z))

KL term



Variational Autoencoder (VAE)

Training objective

arg max ELBO = arg max [ = gy (2 log py(x|z) — Dgy (10g q,(z|x) || p(Z))]
99¢ 99¢

» To train, maximise ELBO instead of log p(x)



Variational Autoencoder (VAE)

Maximising ELBO gives good posterior

e Can show that:

. ELBO = log p(x) — Dy (42101 1P %))

KL term always nonnegative - missing term in the lower bound equation

arg max ELBO = argmax |log p(x) — Dy, <q¢(z|x) | |p(z|x)>
¢ ¢ - i

= —argmax Dy, (‘Iqb(Z'x)' |p(zlx))
b

= argmin Dy (9,191 p10)
¢

—> Maximising ELBO minimises KL divergence between true posterior and approximate posterior



Variational Autoencoder (VAE)

Training procedure

ELBO = E,., 10 l0g x| 9 — Dy, (440101 9@ )

» Sample z from g,(z | x) using datapoint x

» Compute py(x|z)

 Compute KL term analytically or via Simple Monte Carlo



Variational Autoencoder (VAE)

What does this have to do with autoencoders?

Input data

Neural network

Distribution parameters

Sample from distribution Latent space

Neural network

Distribution parameters

Sample from distribution



Variational Autoencoder (VAE)

What does training look like?

Neural network

Distribution parameters q,(z]x = X) < > p(2)
KL term

Dy (44212 = D1 1p@)

Reconstruction term
Pe(x =X|z=2)

Sample from distribution

Neural network

Distribution parameters Pix|z=2) <




Variational Autoencoder (VAE)

What does the autoencoder look like at generation time?

Distribution parameters p(2)

Sample from distribution

Z
Neural network Decoder

Distribution parameters Pox|z=2)

Sample from distribution



Conditional VAE (Supervised VAE)



Conditional (Supervised) VAE

What is a conditional (supervised) VAE?

» Extension of VAE to supervised setting

 Each datapoint x generated from latent variable z and label y -> p(x |y, 2)

p(y) @
p(2) px|y,z) j

» Goal: build generative model p(x, y)




Conditional (Supervised) VAE

What does the training objective look like?

» Condition data generation on y

Condition on y

Independence of y and 7

Express last two terms as KLD

log p(x) > ELBO(x)

log p(x) >
log p(x,y) >
log p(x,y) =
log p(x,y) =

= 7~q(z]x.y)

—7~q(z]x.y)

= 7~q(z]x.y)

E ozl [10gp(x|2) + log p(z) — log g(z | )

log p(x|y,z) + log p(y,z) — log g(z| x, y)]

log p(x

log p(x

log p(x,y) = ELBO(x, y)

¥, 2) + log p(y) + log p(z) — log g(z| x, )]
y:2)| +1og p(y) + Dy (q(z|x,y) | | p(2))



Conditional (Supervised) VAE

What does training look like?

Input data

Neural network

Distribution parameters

Sample from distribution

Neural network

Distribution parameters

p@(xly =5;9Z =2)

Reconstruction term
px=Xxly=y,z2=2)

<

> p(2)
KL term

Dyt (94215 = %y = D)1 1))

Prior term
ply=1y)




Conditional (Supervised) VAE

What does generation look like?

Distribution parameters p(2) p(y)

Sample from distribution

Neural network

Distribution parameters Pox|y=3,2=2)

Sample from distribution




Semi-Supervised VAE



Semi-Supervised VAE

What is semi-supervision?

* Supervised learning - each data point has a label
 Unsupervised learning - no data points have labels

e Semi-supervised learning - small number of data points have labels



Semi-Supervised VAE

What is a semi-supervised VAE? P @

* Extension of VAE to semi-supervised setting @) oy, 2)
» For datapoints with labels: @ @

 Each datapoint x generated from latent variable z and label y -> p(x |y, 2)

* For datapoints without labels:

 Each datapoint x generated from latent variables z and y -> p(x |y, 2)



Semi-Supervised VAE

What does the training objective look like?

 For data points with labels

* For data points without labels

Definitions of
joint and
conditional
probability

log p(x,y) >

log p(x) >
log p(x) >
log p(x) >

log p(x) >

=y,2~q(y,2|x)

=y,2~q(y,2]x)

log p(x|y,2)

—y~q(y]x), z~q(z]x,y)

—y~q(y]x), z~q(z]x,y)

log p(y)

= otelen 1021y, 2)] + log p(y) + Dy (q(z1x, )| | p(2)) = — L(x, y)

log p(z) — log g(y, z| )|

:logp(x | v,2) + log p(y) + log p(z) — log g(y | x) — log g(z | x, Y)]

log p(x|y,2)| + E,oyypn [log p(y) = log g(y|x)|+
log p(z) — log g(z| x, )|

—y~q(y]x), 2~q(z|x,y) [lng(x ‘ Ys Z)] _ DKL (Q(y ‘ )C) ‘ ‘p()’)) + —y~g(y|x) [DKL <Q(Z ‘ Ay y) ‘ ‘p(Z))]

— YU (x)



Semi-Supervised VAE

From training objective parts to model

 For data points with labels

logp(x,y) = E__ xy [l0gp(x|y,2)| +10g p(») + Dy (qz1x, ) || p(2)) = — Z(x, y)

* For data points without labels

logp(x,y) 2 EyNQ(le), z~q(z]x.y) [lng(Xl)’a Z)] — Dy, (Q()’ | x) | ‘p()’)) + [Ech](ylx) [DKL (q(zlx, V)| ‘P(Z))] = — Y(x)
e py(x|y,z): decoder

+ q4(z|x,y) : encoder

+ (¥ |x) : ‘predictor



Semi-Supervised VAE

Overall training objective

F= D Lay+ QU0+ D 1y—Epy ol

XY~y X~Py XY™~ Py

» ¥ is overall training objective (to be minimised)

» p, for labelled data, p, for unlabelled data

* | ast term trains predictor to predict observed properties from labelled data

» [Jis hyperparameter, controls tradeoff between generative and discriminative
learning



Semi-Supervised VAE

What does training look like for labelled data points?

Reconstruction term

px =Xly=y,2=2)
Input data X

Predictor Neural network
y
Neural network m MSE term q,(y|x = X) Distribution parameters
- A2
115 = Byegomd 1]

Distribution parameters qpz|x =Xy =7) < > p(2) Label

KL term
Dyt (9pc1x =%y =911p@)

Sample from distribution

Prior term

Neural network py=1y)

Distribution parameters px|ly=y,z2=2) -



Semi-Supervised VAE

What does training look like for unlabelled data points?

Reconstruction term

Predictor Neural network
Neural network m q¢(y | x = X) Distribution parameters
Distribution parameters q¢(z [ x =X,y =7) < > p(2) sample from distribution

KL term
Dy, <Q¢(Z|X =Xy=))] |p(Z)> KL term

Dyt (4,001x =D11p)

Sample from distribution

\ 4
Neural network p(y)

Distribution parameters px|ly=9y,z2=2) -



Semi-Supervised VAE

What does unconditional generation look like?

Prior distribution p(2) p(y) Prior distribution

Sample from distribution Sample from distribution

l l

Neural network Decoder

Distribution parameters pPx|y=3,z2=2)

Sample from distribution



Semi-Supervised VAE

What does conditional generation look like?

Prior distribution p(2)

Sample from distribution Desired value of property

Neural network Decoder

Distribution parameters pox|ly=vy",z2=2)

Sample from distribution



Semi-Supervised VAE

What does property prediction look like?

Neural network Predictor
Distribution parameters q,(y|x = X)

Sample from distribution
(or value corresponding to maximum probability) y






Recap

» Generative models model data generating distribution p(x)

» For (semi-) supervised learning they model p(x, y)
 VAEs are a type of generative model
e Conditional VAEs extend VAEs to a supervised setting

 Semi-supervised VAEs extend VAEs and conditional VAEs to a semi-
supervised setting
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